Precise diagnosis of soil by material circulation

-Evaluation of soil condition based on microbial activity for organic agriculture-

Motoki KUBO Ph. D

Department of Bioscience and Biotechnology, Faculty of Life Sciences, Ritsumeikan University

Self-sufficiency in food

Food import and export

Problems of food in Japan

Depend on import foods (decrease self-sufficiency)

Self-sufficiency in food is very low (about 40%)

Safety of foods

Contamination of toxic substances (agro-chemicals, pesticide, etc)

Competition between foods and new energy

Corns, sugarcanes, etc. are used for production of bio-ethanol

Food price is significantly increasing

Recent strong wishes for food in Japan

- Safety
- Out of danger, security
- Food quality (need organic products)

Need of microbe monitoring

Quantify of bacterial biomass

Plating method

- Can not count VBNC (viable but not cultureable) microbe
- Take long time

DAPI staining method

- Analyze correct microbe number
- Complicated procedure

- Need to analyze VBNC Need easy procedure

Extract and quantify of eDNA

Evaluation of soil bacterial biomass by eDNA

Evaluation of bacterial biomass

Fig. Agarose gel electrophoresis of eDNA extracted from soil in an agricultural field using various eDNA extraction methods.

Lane 1 Smart Ladder (mass marker)

Lane 2 slow stirring method

Lane 3 heat treatment method

Lane 4 the bead method

Fig. Relationship between the bacterial number obtained using DAPI staining and the amount of eDNA in 57 soils.

■; the amount of eDNA in an agricultural field

◆; oil-polluted field

▲; non-agricultural field.

Analysis of bacterial biomass

Fig. Number of microorganism in agricultural field, oil polluted, and other soils. (209 samples)

Oil polluted soils Other soils Agricultural field soils

Environmental DNA extraction machine

Precise diagnosis of soil by material circulation

Relationship between bacterial biomass and nitrification

Fig. Relationship between bacterial biomass and nitrification

Evaluation of nitrogen circulation

Diagnosis of bacterial biomass and nitrification

A : Sample ①

Bacterial biomass

Area of sample ① : 62.7/100%

B : Sample ②

Bacterial biomass

Area of sample ② : 7.1/100%

Evaluation of agricultural soil and compost

Soil No.	Value	Compost No.	value
1	62.7	2	40.0
5	30.1	8	30.0
10	21.8	3	26.0
9	21.3	4	24.9
6	21.2	7	22.2
4	13.6	9	16.6
8	11.5	⑤	11.0
7	9.8	1	10.8
3	9.5	6	5.7
2	7.1	10	1.0

Precise diagnosis of soil condition

For high quality of organic agricultural product

Chemical analysis

Biological analysis

- NH₄+
- •NO₂
- •NO₃
- Total carbon
- Phosphors content
- Potassium content
- •pH
- Soil types

- Bacterial biomass
- Ammonia oxidizing bacterial biomass
- Nitrogen circulation activity
- Phosphorus circulation
- Carbon circulation
- Sulfur circulation